AUTO - PURGER

Non-Condensible Gas Refrigerant Purger

OPERATOR

INSTALLATION

&

INSTRUCTION

MANUAL

QUESTIONS? 1(800)426-7368

HANSEN TECHNOLOGIES CORPORATION

129 W 83rd St. Burr Ridge, IL 60521 (312) 325 - 1565

BULLETIN AP-002B JUNE, 1987

HANSEN TECHNOLOGIES

CORPORATION

129 West 83rd Street

Burr Ridge, Illinois 60521, U.S.A.

Telex: 206851

(312) 325-1565

AUGUST, 1987

Supplement to Bulletin AP-002B

Time Delay Relay Improvement

All Hansen Technologies Auto-Purgers now use a fixed 1 hour time-on delay relay with an "on-off" switch in place of the adjustable 2-60 minute time delay relay on earlier units. The time-on delay relay limits the purge gas solenoid valve air removal open time to the water bubbler to a maximum of one hour. This time-on delay relay should be switched to "on" for normal amounts of air removal.

During start-up or under high air removal conditions the timeon delay relay may be bypassed (switch to "off" position) to allow
the purge gas solenoid valve to remain open as long as air is
present. Start-ups of new systems or major repairs on an older
system may result in extensive amounts of air collecting in the
condensers and high pressure receivers. Typically on a large
system, the Auto-Purger will remove air nearly continuously for
the first one to three days of operation.

After the initial volume of air is removed, and air is being removed at short intervals of time, the time delay relay should be switched to "on" as extra protection against refrigerant escape due to an electrical or mechanical failure which might cause the purge gas solenoid valve to be continuously open for more than an hour.

Part No. 201498 Fixed 1 Hour Time On Delay Relay with On-Off Switch

INTRODUCTION

The AUTO-PURGER is a totally automatic electronically controlled non-condensible gas purger for reducing condensing pressure and saving power. The Deluxe Models APC, APO8, AP16 and AP24 are pre-packaged, pre-wired, insulated and include an automatic water bubbler. Installation requires piping the "foul gas" line, liquid line, suction line, water line, drain line, 120V/60HZ power connection and wiring the remote 120V purge point solenoid valves. Half inch port purge point solenoid valves and check valves must be purchased separately.

The basic model AUTO-PURGER Model AP01 is the same construction less insulation, automatic water bubbler and water solenoid valve, 7-day time clock and sequence timer for remote multi-point purge solenoid valves. (The AP01 can be retrofitted in the field for upgrading to AP08, AP16 or AP24,) The AP01, like the AP08, AP16 and AP24, includes the automatic fill, cool down and purge features.

Because of its internal surface area and flooded evaporator efficiency, the AUTO-PURGER has two to three times the "Foul Gas" condensing capacity of an Armstrong purger. Model APO1, APO8, AP16 and AP24 for normal non-condensible loads will handle a 750 ton plant at suction pressure below atmospheric pressure or a 1500 ton plant at positive suction pressures.

Because of its design, the AUTO-PURGER can operate over a wide condensing pressure range. This is especially important for refrigeration systems that operate at low condensing pressures during cold ambient conditions.

MOUNTING INSTRUCTIONS

Mount the AUTO-PURGER securely on a wall or sturdy steel channels. Several 1/2" dia, holes drilled in the frame may be used to bolt the unit to its supports. The unit should be located in an accessible area but out of the way of the movement of equipment that could accidently come in contact with the purger. (See Fig. 1)

PIPING INSTRUCTIONS "Foul Gas" lines

The AUTO-PURGER is available as single point purger (Model APO1), or with an 8, 16 or 24 purge

point timer (Models AP08, AP16 and AP24 respectively). For the single point purger, Model AP01, the "Foul Gas" line is brought directly from the purge point on the condenser or receiver to the purger. During operation, the AUTO-PURGER's "Foul Gas" inlet line is opened automatically by the "Foul Gas" solenoid valve located on the purger, when the purger is cooled to approximately 20°F.

"Foul Gas" Piping for Multi-Point Purging

Purging at several points on the high pressure side of the system is the best method of removing the "Foul Gas" from the system because it is nearly impossible to predict where the non-condensible gas will accumulate.

Even for multi-point purging only one purge point should be purged at a time. Connecting two purge points from two condensers or receivers may result in gas flowing from one condenser to another due to unequal pressure drop, even though the differences in pressure drop are small. The result would be that only one condenser would be purged. The best practice is to purge each condenser and receiver circuit separately.

For multi-point purgers, the solenoid valves may be manifolded into one line leading to the purger. A 1/2" size line is the minimum size. A low pressure drop check valve should be installed on each purge line leading from any condenser or receiver where the pressure is 5 psi or more lower than other condensers or receivers on the same circuit. This is to prevent possible backflow of gas through the solenoid valve of the lower pressure purge point. (See Fig. 2) The line from the purge point on the condenser to the AUTO-PURGER should not pass through cold areas where further condensing of the saturated gas can occur.

Place purge point solenoid valves at purge points to avoid condensing in purge lines during off time. Manifold outlets of purge point solenoid valves and run one line to purger. Pitch line toward purger to drain any condensed liquid. No traps are allowed either before or after purge point solenoid valves.

On evaporative condensers, avoid using one purge point solenoid valve to purge two circuits. This practice negates the P-trap on the condenser drain line and may back liquid up into one circuit,

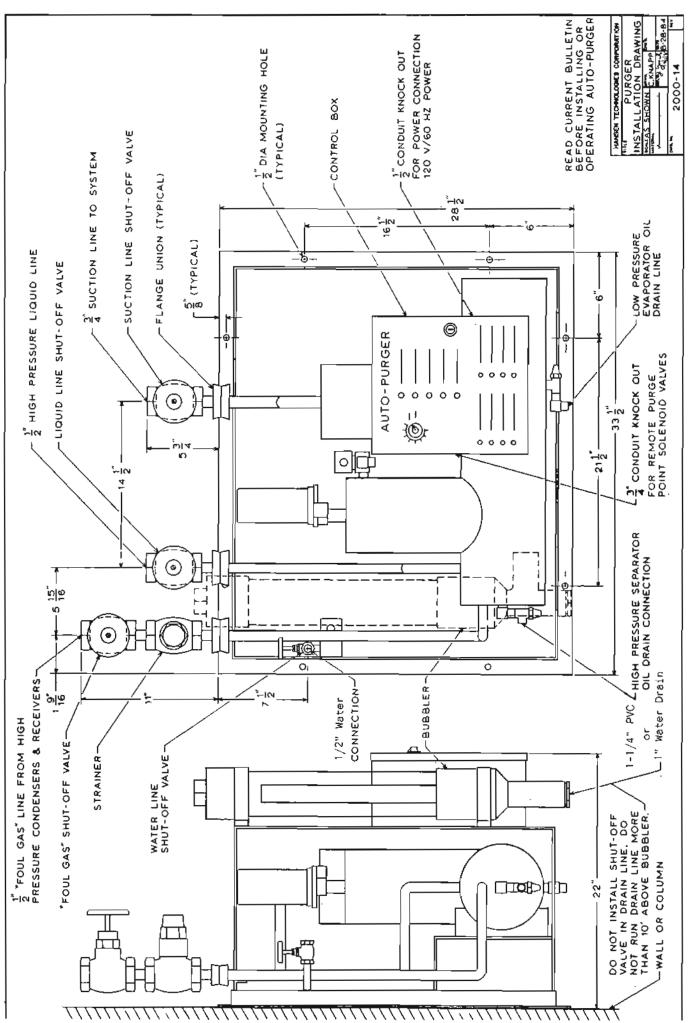


FIG. 1

Condenser Piping Design

Drain lines on each circuit must drop a minimum of 4' for ammonia (8' for freon) from centerline of the evaporative condenser outlet to the centerline of highest elevation of the liquid line manifold to receiver. Preferably each circuit should have a P-trap to balance variations in pressure drop in each circuit to prevent liquid from backing up into condenser and flooding purge point. Also, a properly sized equalizer line from the receiver will help gravity drain condenser circuits into receiver. Refer to ASHRAE GUIDELINES or recent IIAR Papers on condenser piping design. Hansen Technologies can provide copies of these articles.

Liquid Drainer

Each purger is equipped with a liquid drainer. Small amounts of liquid refrigerant, present in nearly all purge lines, are directed into the liquid drainer. From there, the liquid is released into the evaporator by-passing the condenser. Only "Foul Gas" flows to the condensing coil.

Where To Connect Purge Points

"Foul Gas" lines from condenser should be purged at points recommended by the condenser manufacturer. Usually, this is at the top of each circuit's outlet header.

In some cases where a small high pressure auxiliary receiver is located at the outlet of one or more condensers, this receiver should also have a purge point.

Where a high pressure float regulator is used to drain one or more condensers, the top of this float valve chamber should also be a purge point.

Horizontal shell and tube water-cooled condensers should be purged at the top, usually at the point or points the furthest from the inlet from the compressor discharge main.

Vertical condensers should be purged at the top of the outlet drain or from a connection just above the outlet drain line connection.

"Foul Gas" from Oil Separator

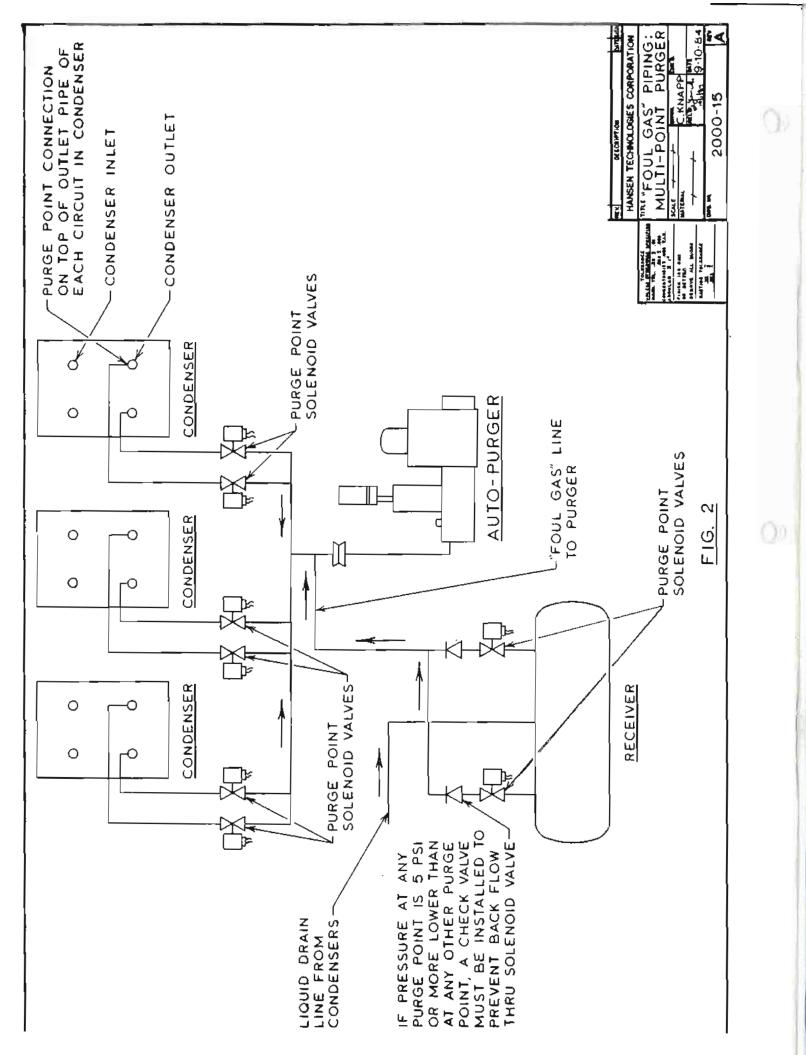
For certain types of oil separators where

very low velocities may exist near the top of the tank, purging may be advisable from a top fitting on the separator.

Liquid Line

One high pressure 1/2" liquid line is required to the AUTO-PURGER. The connection to the high pressure liquid source should be a location where oil cannot be directed into the purger. The liquid line supplies refrigerant during start-up and feeds make-up liquid as required during purging. A solenoid valve in the AUTO-PURGER closes the liquid line when the AUTO-PURGER is off. The exact supply pressure is not critical to the proper operation of the purger. The only requirement is that the pressure be sufficiently above the evaporator pressure to insure proper operation of the Level Master Control. (However, low pressure liquid supply as in a liquid recirculation system or from a "low" controlled pressure receiver requires a special model of AUTO-PURGER.)

Suction Line


The 3/4" suction line is connected to a protected main suction line or can be piped to a suction accumulator. Excess amounts of liquid from the liquid drainer may occasionally be removed through the suction line. The suction temperature must be 25°F or less to close the thermostat which switches the AUTO-PURGER from its PURGER COOLING DOWN mode to its purging mode. The purger thermostat factor is set at 30°F. For higher suction pressures, consult factory.

Water line

Purger Models AP08, AP16 and AP24 are provided with an automatic bubbler. A water line must be connected to the water solenoid valve. The connection is 1/2" FPT. The water supply pressure should be between 30 and 80 psi.

The clear tube in the water bubbler may become coated with mineral deposits after a period of time. These deposits can be removed by adding a cup of vinegar to the water in the bubbler and cleaning the clear tube with the bottle brush supplied. A water conditioning filter is available for abnormally hard water supply.

For basic Model APOI, a plastic hose and

fitting is supplied for top entry to the bottom of a one gallon or larger glass or plastic jug (not supplied). This jug must be refilled with fresh cold water when it will hold no more ammonia.

Drain Line

A 1-1/4" PVC socket/1" threaded water drain connection is located at the bottom of the bubbler. The water and small amount of dissolved ammonia should be run to a suitable drain or container. Do not install a shut-off valve in this line. Do not run the line over 10' above the height of the bubbler because the pressure in the plastic bubbler housing could be excessive. For APO1, no drain is necessary,

Oil Drains

The purger has two connections for draining oil from the purger. Excess oil could reduce the purger capacity by lowering the evaporating or condensing rate. (See Fig. 1)

Any oil that collects in the purger can be drained off through the two capped 1/4" valves installed on the purger. Shut-off purger and allow it to warm up to reduce the oil viscosity for easier removal. Use normal oil draining precautions to prevent human or property damage as ammonia might escape with the oil. Generally, oil is not a problem unless the liquid line is connected to a vessel or line where oil is present.

Check Valves

There are three stainless steel check valves installed on the purger. One 1 psi differential check valve is installed on the purge gas line to prevent reverse flow of water into the purger. A second 30 psi differential check valve is installed in the stainless steel liquid line to the float chamber. It limits liquid line pressure at the purger to 30 psi less than the condenser pressure.

The third check valve is a 200 psi differential relief check valve to suction.

The water line also has a check valve to prevent reverse flow.

Electrical Connections

The standard electrical requirement for the single point purger is a 120V/60HZ supply. The circuit should be fused at 15 amperes. A 1/2" knockout on the top of the control cabinet provides access to the power connection terminal strip.

The multi-point purger (Models APO8, AP16 and AP24), in addition to the electrical connection above, provides for the connection of the individual purge point solenoid valves. A 3/4" knockout on the top of the control panel provides access. Wires from each purge point solenoid valve and a common neutral wire should be brought to the purger control box.

One line from each purge point solenoid is connected to a numbered screw terminal located inside the control box near the top. The numbers on the terminal strip correspond to the numbers on the lights located on the door of the control cabinet. The neutral side of the solenoid coils can be grouped together in a junction box and one common line run to the control cabinet. The neutral connection is made at the terminal strip. The voltage of the remote purge point solenoid valve is 120V/60HZ. The electronic control circuits as well as the door panel is 12V D.C. This 12V circuit is internally wired to a transformer and normally does not need to be serviced.

Setting the Grasslin Timeclock

The timeclock used in the AUTO-PURGER Control Box is a Grasslin 7-Day Timeclock. To set the time of day, rotate the minute hand until the correct time and day is shown on the circular dial. Once the correct day and time of day are set, the amount of purging per day must be determined and set. Quite often the purger is run 24 hours per day so no settings are required. Just pull all the red pins from the circular dial to leave the time clock on continually. A small knob in the upper right hand corner of the timeclock can be turned manually to turn the purger on and off.

If the purger is to run on an intermittent basis, then set the "ON" time using the green tabs and the "OFF" time using the red tabs. Use a green tab and red tab for each day of the week.

Setting Purge Point Timer

Each timer board contains eight relays which

power the remote purge point solenoid valves. These relays operate in sequence as long as the AUTO-PURGER is set on "AUTO". The time each purge point relay operates is adjustable. A small screw-driver is used to adjust the "timers" anywhere from one minute to sixty minutes. The screwdriver slot in the form of an arrow on top of the "timer" can rotate approximately 270° with linear increase in time in a clockwise rotation. (See Fig. 5)

When on "AUTO", the sequence will always start with purge point #1. After purge point #1 has timed out, purge point #2 will start and so

After purge point #8 is finished, the timer circuit will jump back to purge point #1 and repeat This will continue as long as the the sequence, purger front panel switch is set to "AUTOMATIC" position. When less than eight purge points are used, "jumper select connector" (see Fig. 5) is installed on the two pins corrsponding to the number of purge points used. (In the illustration six purge points are used.) This "jumper select connector" will bring the sequence back to purge point #I and skip those points not used. In the illustration, the sequence timer will jump from purge point #6 to purge point #1 and repeat the cycle. Purge points #7 and #8 are skipped. If it is not desired to use this jumper, merely set unused timers to minimum position (counter-clockwise). Each unused purge point would then result in one minute of unused purging time.

Manual Operation for Purge Points

The purger switch located on the front panel of the APO8, AP16 and AP24 AUTO-PURGERS can be used to manually select the purge point location as well as turn the purger to "AUTO" and "OFF". If it is desired to purge one location continuously, turn the purger switch to that position (1 through 8 points on APO8, 1 through 16 points on AP16 and 1 through 24 points on AP24).

The AUTO-PURGER will go through automatic start-up with the switch in either the "AUTO" or "MANUAL" position.

Purge Gas Solenoid Valve Time-Delay Cutout

The AUTO-PURGER is equipped with a one hour adjustable time-delay relay on the purge gas solenoid valve that meters the air to the water bubbler when the purger is operating. This relay prevents the air or refrigerant from feeding into the water bubbler for more than one hour continous operation. This is to prevent excess amounts of ammonia from bleeding into the water bubbler in case of either a float switch mechanical malfunction or electrical During start-up of a new purger, it is sometimes advantageous for the purge gas solenoid valve to remain open continuously due to the large amount of non-condensible gas in the system. When the delay relay time is exceeded the magnet is away from the delay tube but no gas is escaping into the water bubbler. To reset the time delay relay, momentarily turn the purger to "off" and back to "on". This will reset the time delay relay for another hour of continuous bleeding of air into the water bubbler. If this becomes a nuisance, the time delay relay can be jumpered to remove it from the electrical system. To do this, remove the time delay relay from the eight pin socket and, use short jumper wires between terminals 2 and 4 on base. Current relays are equipped with a fixed 1 hour time delay relay with an on/off switch to by-pass the time delay function. During start-up simply turn relay to "OFF" until the air is removed. Then switch to "ON" for normal air removal operation.

After the system has stabalized and all the air is removed, remove the jumper and replace with the time delay relay.

Operation of Metering Valve

The operation of the metering valve is to meter condensed liquid refrigerant from the high pressure side of the purger into the flooded evaporator of the purger. The flow to the metering valve is controlled by a 1/4" liquid line solenoid valve which is open when the purger is in automatic or manual operation. The refrigerant is filtered by a small flanged filter just before the metering valve. This filter removes any particles that might block the orifice.

The proper operation of the metering valve can be determined by a frosted line after the metering valve. If the stainless steel line is not frosted when the purger is in the "AUTOMATIC" or "MANUAL" operation, then the flow of refrigerant through the line is blocked due to dirt in the metering valve, filter or solenoid valve. To clean the orifice or the metering valve, open the metering valve and re-open six turns. This is the proper operating setting for the metering valve.

The metering valve is set and held in place by a locking knob. The knob may be unlocked by using the small Allen wrench provided in the control box. Unlock the knob before making adjustments. Relock the knob after final adjustment has been made.

If the line does not frost, check the metering line solenoid valve for operation. If solenoid valve appears to be operating normally then pump out the purger and inspect the filter and solenoid valve for proper operation.

Operation of Counter

The purpose of the counter is to count the number of times the purge gas solenoid opens to feed air into the water bubbler. It does not monitor the duration of the purge time but just the number of times the solenoid valve is operated. To reset the counter to zero, push the button on the right side of the face of the counter.

The counter can be used to measure non-condensible gas activity. If daily or weekly record is logged, then any abnormal increases in the amount of non-condensible gases can be noted and corrective measures can be taken to determine the source of the air leak.

Operation of Level Master Control

The purpose of the Level Master Control is to maintain the liquid level in the flooded evaporator. during start-up, the liquid line opens to feed liquid refrigerant to the Level Master. The Level Master will feed liquid until the level in the flooded evaporator reaches the level of the sensor. During operation of the purger, the Level Master acts as a make-up device to maintain the liquid level. approximately 95% of the liquid used in the evaporator is from the condensed liquid that is fed through the metering valve.

Liquid Drainer

The liquid drainer is used to remove any condensed liquid that trickles down the purge lines into the purger. In this way the purger is always condensing gas rather than having liquid entering the condensing section of the purger and preventing proper operation. (Liquid Bound) If too much liquid comes down the "Foul Gas" line due to improp-

rerly piped condensers, corrections must be taken to eliminate the problem. Too much liquid can be determined by noting the condition of the stainless steel line running from the outlet of the liquid drainer to the inlet feed. The stainless steel line will frost and defrost as small amounts of liquid are released into the flooded evaporator. If the line is continuously frosted, then it is an indication one or more purge points are flooded with liquid.

Leak Test

Use standard refrigeration procedures to check AUTO-PURGER for leaks before placing it in service. To confirm a leak-free AUTO-PURGR, manually open the "Foul Gas" solenoid valve on the purger by removing the lower seal cap and turning in the stem. Next, manually open one remote purge point solemoid valve, if there is one. Manually open the "Foul Gas" hand shut-off valve and allow pressure to build to 60 psig as shown on the pressure gauge, them turn this valve off. Turn purger switch on front panel to "AUTO". This will open the "VENT" solenoid valve on the purger and pressurize the evaporator section of the purger. check for leaks. Return all solenoid manual opening stems to the automatic postion.

Water Bubbler

The APO8, AP16 and AP24 AUTO-PURGERS are equipped with a Water Bubbler. Non-condensible gas from the AUTO-PURGER flows through the Water Bubbler where the residual ammonia is absorbed into the water. The water, with absorbed ammonia flows to a drain. A water solenoid valve opens each time the non-condensible gas solenoid opens to automatically replenish water to the bubbler. A 30 second time delay permits the water solenoid valve to remain open after the purge gas solenoid closes (float switch magnet pulls in).

Install a 1-1/4" PVC or 1" galvanized steel Drain Line. Do not use copper for Drain Line. Do not install any shut-off valves in Drain Line. Water should free drain to sewer, or may be piped up to 15' above Water Bubbler if line is kept free of accumulation of dirt and mineral deposits and a protective wire mesh is installed around clear tube. Support the Drain Line to prevent undue stress on Water Bubbler. Initially, fill Water Bubbler with water through the 3" threaded plug located on top. Keep plug threads lubricated and tighten hand tight. Check for leaks at hose fit~

-tings. The Henry valve on the purge gas line leading to the Water Bubbler is factory set at 1/8 turn open. Do not open this valve wider as the amount of purge gas will push the water out of the bubbler. Operating properly, the water bubbler should be approximately 1/2 full of water and 1/2 full of air bubbles.

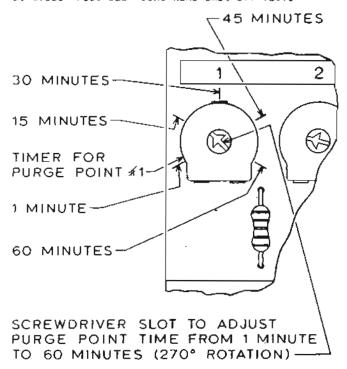
Start-Up

Check piping and electrical connections. (Read sections on "Piping Instructions" and "Electrical Connections" in this bulletin.) Open "Foul Gas", liquid and suction line shut-off valves. On Models AP08, AP16 and AP24 open water shut-off valve. Turn the purger switch for Models AP08, AP16 and AP24 located on the front panel of the control cabinet to the "AUTO" position. Be sure 7-day time clock is "ON".

The AUTO-PURGER will begin a "COOL DOWN" stage of operation. A "PURGER COOLING DOWN" light on the front panel will indicate this stage. This stage of operation is necessary to allow the purger to cool to a temperature where good separation of non-condensible gas and ammonia will occur. The AUTO-PURGER will not condense any "Foul Gas" nor allow non-condensible gas into the Water Bubbler until the temperature of the evaporator reaches approximately 20°F. It should take 5 to 15 minutes depending on suction line temperature to reach 20°F.

Operation

A thermostat with a sensor located on the horizontal portion of the purger will actuate when temperature reaches 20°F and condensing of "Foul Gas" will begin. This is indicated by the "AUTO-MATIC" light located on the front panel of the control panel.

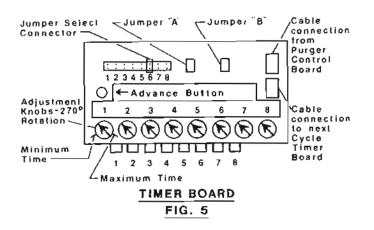

For Model APOR AUTO-PURGER, the "Foul Gas" solenoid valve located on the purger will open and "Foul Gas" from a single purge point will flow to the purger.

4. Close water line valve

Purger will pump down in several hours, To speed procedure up, attach ammonia hoses to oil drain valves and drain into suction line, Close suction line to isolate purger. With electrical on, pressure gauge should remain at zero psi.

Purger Pump-Out Procedure, With Purger On

-). Close air bleed valve to Water Bubbler
- 2. Close liquid line hand shut-off valve
- 3. Close "Foul Gas" line hand shut-off valve


DETAIL SHOWING ADJUSTMENT OF PURGE POINT TIMER FIG. 4

SECTION III SPARE PARTS

SPARE PARTS LIST

Electrical

Part No.	Description
20-1202	LED Light - Red
20-1203	LED Light - Yellow
20-1204	Led Light - Green
18Z7502	Solenoid Coil-120V/60HZ/14 Watt
20-1424	7-Day Timer
20-1130	Purger Control Board
20-1131	8-Point Sequence Cycle Timer
20-1205	Transformer-115V/60HZ-24V/60HZ
20-1307	Thermostat
20-1328	Time Delay Relay
20-1280	Counter

Mechanical

Part No.	Description
20-1179	Level Control Valve
20-1441	Power Element, Level Control Valve
HLLSW	Float Switch Assembly
20-1142	Fioat Ball Assembly
20-1212	Gasket - Top Adapter
20-1186	Metering Valve
20-1198	Metering Valve Seal Kit
20-1214	Check Valve Seal Kit

The AUTO-PURGER is designed to automatically start-up and operate without the assistance of plant personnel. Beginning at start-up, the following is a description of the refrigerant flow through the purger.

Start-Up

On start-up, the AUTO-PURGER first enters a "COOLING DOWN" step. In this step, refrigerant fills the purger and cools the purger down to temp-Both the flooded evaporator and high pressure air separator chamber are filled at the The liquid line solenoid (#1) opens same time. to feed refrigerant to the liquid Level Master The liquid Level Master control control valve, valve opens to fill the low pressure flooded evaporator. The liquid level sensor located in the suction separator chamber senses when the flooded evaporator is full and closes the liquid level The flooded evaporator is cooled control valve. to the suction temperature.

At the same time the flooded evaporator is filling, liquid refrigerant fills the float ball chamber and the air separator chamber through the fill line and 30 psi differential check valve. The refrigerant gas that is formed is vented to suction through the vent solenoid (#2).

As the float ball chamber is filled with liquid refrigerant, the float ball moves up, pulling in the magnet of the liquid level float switch to activate the electrical switch and turn off the vent solenoid valve (#2).

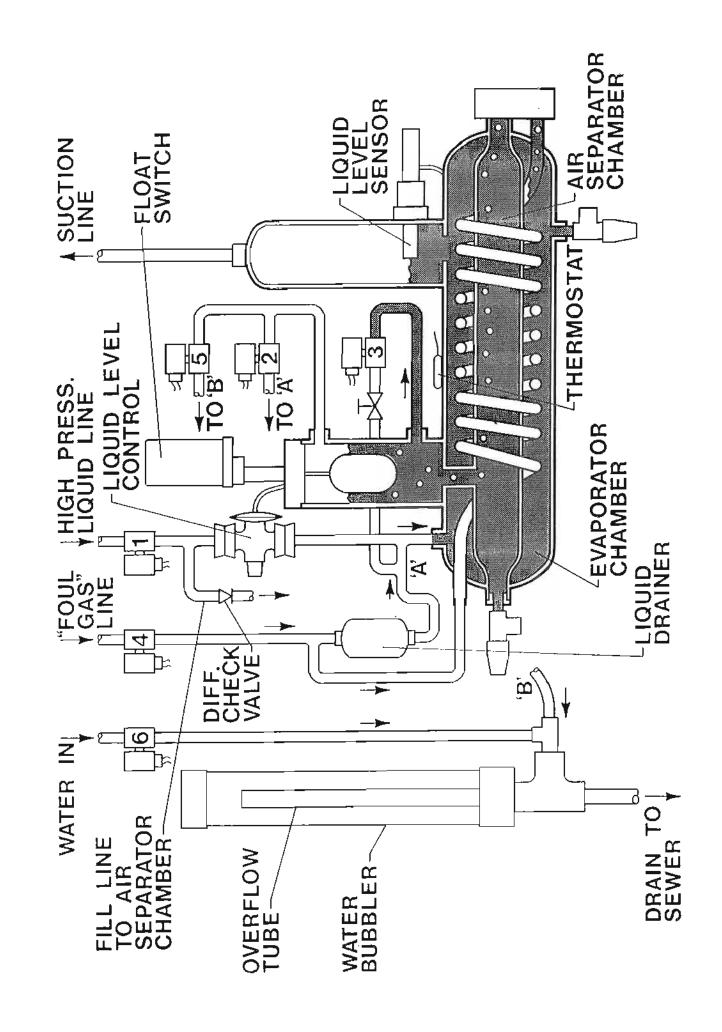
The purger continues to cool down. A thermostat with sensor bulb attached to the flooded evaporator senses temperature. At approximately 20°F the factory set the thermostat switches from "COOLING DOWN" to "OPERATION".

Operation

The thermostat switches the AUTO-PURGER to "OPERATION" when the evaporator temperature reaches 20°F. This opens the "Foul Gas" solenoid valve (#4) and allows the non-condensible gas and refrigerant mixture into the purger.

The "Foul Gas" carries with it a certain amount of condensed refrigerant which is captured by the liquid drainer before it enters the purger's condenser coil and is by-passed directly to the

flooded evaporator. Otherwise, the liquid refrigerant could fill the purger's condenser and limit the condensing capacity of the Purger.


The liquid-free "Foul Gas" enters the purger condensing coil which is submerged in the flooded evaporator. The refrigerant condenses inside the coil as it proceeds to the other end. The now condensed refrigerant and non-condensible gas pass through a check valve and back into the air separator chamber. The condensed liquid refrigerant is removed from the high pressure air separator chamber through the liquid metering solenoid valve (#3) and through a metering valve and into the flooded evaporator.

Meanwhile, the air bounces along the top of the chamber and then into the float ball chamber where it is collected. The collected air gradually depresses the liquid level causing the float ball to fall. This changes the SPDT switch position of the liquid level float switch and opens the non-condensible gas to bleed through the 1/4" NPT Henry valve into the Water Bubbler (except APO1).

For Models APO8, AP16 and AP24, in addition to the above, the Purger Timer Board will open the remote solenoid vlave for purge point #1. (See "Purger Timer Board" section for details.) The Purger Timer Board will operate each remote purge point solenoid valve as long as the purger switch on the front panel of the control cabinet is on "AUTO" and the 7-day time clock is "ON".

Water Flush System

The water flush system consists of the factory mounted water bubbler and water solenoid valve (#6) with water check valve and shut-off valve. Non-condensible gas and water mix in the water bubbler where the residual amounts of ammonia are absorbed. The water is automatically fed to the Water Bubbler through the water solenoid valve (#6). This valve is energized at the same time the non-condensible gas solenoid valve (#5) is energized. (It works off the liquid level float switch.) The ammonia ladened water and air are flushed to the drain through the overflow tube.

Purger does not operate when switch is turned on, ("AUTOMATIC" or "MANUAL" selection)

1. REASON: No power to purger

SYMPTOM: "ON" and "PURGER COOLING DOWN" lights

of t

CHECK: 120 volts at "LINE" and "NEUTRAL" term-

inal in control box

ACTION: Check voltage source

2, REASON: No power to purger board 20-1130

 ${\small \textbf{SYMPTOM:}} \quad \textbf{Red} \quad \textbf{LED} \quad \textbf{light} \quad \textbf{on} \quad \textbf{purger} \quad \textbf{board} \quad \textbf{not}$

lit

CHECK: VOLTAGE TO BOARD

Voltage between terminal "RL" and "COM-

MON" should be 120V/60HZ

3. REASON: 7-Day Timer not "ON"

CHECK: Time setting on timer

ACTION: Set time per instructions

4. REASON: Fault in wiring to purger board

CHECK: Leads 36, 37, 38 and 46 for continuity

ACTION: Repair if defective

5. REASON: Transformer faulty

SYMPTOM: Red LED light off but power at term-

inal "RL"

CHECK: 24V between lines 43 and 44.

ACTION: No voltage: replace transformer.

If voltage okay go to 6.

6, REASON: Short in 12V DC circuit

SYMPTOM: Red LED light on purger board 20-1130

will go out if there is a short, Purger board has built-in safety circuit to turn itself off if overload

occurs.

CHECK: Disconnect purger cables 20-1195,

20-1197 and terminal plug connections 22 through 26. Red LED light on purger

board now lights,

ACTION: Plug in each cable separately to deter-

mine which circuit has ground short.

(Red LED light will go out) Repair

short. If LED does not light replace

circuit board,

7. REASON: Fault in purger cable 20-1195

SYMPTOM: "ON" light off but Red LED light

on purger board on

CHECK: Voltage at terminal 1 should be 12V

DC

ACTION: No voltage - check continuity of cable

201195 and repair.

If voltage - go to step 8

8. REASON: Faulty Rotary Switch

SYMPTOM: No voltage at terminal 2 when rotary

set to "AUTOMATIC" position.

ACTION: No voltage - check wiring on Leads

1 and 2 and rotary switch.

If voltage - go to step 9

9. REASON: Fault in purger cable 20-1195

SYMPTOM: "ON" light and LED light are on but

purger not operating

CHECK: continuity of line 2 on purger cable

20-1195

ACTION: Fix fault,

If voltage to purger board through

line 2 is 12V DC, then fault on purger

board. Replace purger board 20-1130

Trouble shooting timer board operation.

I. REASON: No voltage to Timer Board.

SYMPTOM: Red Led light not on

CHECK: Voltage on cable 20-1197 leading from

purger board. White wire is neutral and black and grey wires are 12V DC

when purger is in AUTOMATIC" position.

ACTION: Repair discontinuity

CHECK: If cable 20-1197 is okay, check for

12V DC at terminal 4 on door panel.

ACTION: If no voltage, check wire 4 for contin-

uity

2. In "AUTOMATIC" purge point lights do not oper-

ate.

REASON: Fault in timer board cable 20-1196

SYMPTOM: Purge point solenoids operate but

lights do not light.

CHECK: continuity of each line

ACTION: Repair fault.

3. In "AUTOMATIC" all purge point lights on.

REASON; Fault in purger board to timer board

cable 20-1197.

CHECK: Continuity of each line

ACTION: Repair fault.

4. REASON: Purge point solemoid valve does not

operate

CHECK: Two amp fuse for fault

ACTION: If faulty, replace

CHECK: Voltage at terminal "RL". Voltage

should be 120V/60HZ.

If no voltage, check continuity of

Leads 42.

Purger does not switch from "PURGER COOLING DOWN" to "AUTOMATIC" or "MANUAL OPERATION".

1. REASON: Suction temperature too high

CHECK: Suction pressure at purge suction line connection.

ACTION: Move suction line to lower temp suction, or reset thermostat to higher temperature. (Call factory before changing thermostat setting.)

2. REASON: Restriction in suction pressure.

CHECK: Line size and hand valves. Suction line should be a minimum of 3/4" size.

ACTION: Remove restriction.

Air is not released from purger.

 REASON: Time delay relay P/N 20-1328 time limit exceeded.

SYMPTOM: Magnet on float switch away from steel tube, water solenoid on and non-condensible gas to atmosphere light is on.

CHECK: One hour time delay limit powering purge gas solenoid valve exceeded.

ACTION: Turn purger off momentarily to reset one hour time delay. Set time delay at maximum. If time limit continues to be exceeded, remove time delay module and jumper between terminals 2 and 4 on time delay module base.

2, REASON: Liquid feed line plugged

SYMPTOM: Purger appears to be operating properly, Liquid feed line not frosted.

CHECK: Metering valve P/N 20-1186 for restrict-

ACTION: Unlock metering valve knob using small Allen wrench taped inside control box and open wide to clear any dirt plugging orifice. Close metering valve and re-open to 6 turns open.

CHECK: Liquid Feed Solenoid Valve

ACTION: Check liquid feed solenoid to see if it is energized. If feed line does not frost, strainer or line is plugged and must be disassembled to find cause of blockage. See Pump-Out Procedure Section IV.

 REASON: "Foul Gas" line is flooded with liquid. SYMPTOM: Stainless steel line from bottom of liquid drainer to inlet of evaporator is always frosted. During proper operation, line should frost and defrost periodically.

CHECK: Refer to Section I for condenser piping recommendations.

4, REASON; "Foul "Gas line not open

SYMPTOM: Pressure gauge on purger reading 20-30 psi below liquid line pressure.

CHECK: Close "Foul Gas" hand shut-off valve.

If pressure falls 20-30 psi at pressure
gauge located on purger, "Foul Gas"
line is open. If pressure remains
the same, then:

ACTION: Check for purge point solenoid not electrically energized or stuck closed. Check for hand valves not open. Check foul gas solenoid valve on purger for proper operation. To check for sticking solenoid valve, use manual opening stem to open valve. Observe if pressure increases.

REASON: Liquid line pressure at purger 20 psi or higher than condensing pressure.

SYMPTOM: Liquid line pressure at purger higher than condenser pressure.

CHECK: Put pressure gauges at liquid line and "Foul Gas" line to check pressures. Check for high static head of liquid and/or pump boosted liquid line pressure

ACTION: For high static head, install a pressure reducing HAZBL - Differential Pressure Regulator in the liquid line. For boosted pump liquid problem, take liquid line from location before pump,

6. REASON: Purge point solenoid coil burned out.

SYMPTOM: 2 Amp fuse blown (do not increase ampacity of fuse).

CHECK: Coil resistance in each coil for shorted

ACTION: Replace coil and 2 amp fuse.